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Keeping Up with the Microarray Literature:

How Many Can You Read Per Day?

Microarray Articles in PubMed
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—a— All Microarray Papers —m— Statistical methods for microarrays

From Mehta, Tanik, & Allison .




A Perspective on Statistics

o We study:

Samples

Data




Things Statisticians Do:

Develop Design & Analysis Procedures to Facilitate:

e Measurement — (e.g., produce a variable Y’ that

represents Y) :

e Prediction — (e.g., ‘impute’ unobserved values of X using
observed )/).

e Estimation — (e.g., estimate A = pl—uZ).
e Inference — (e.g., conclude whether & = 0).

e Classification — (e.g., for j = 1 to k, sort the Y; into m < k
groups).



Epistemological Foundations

e Epistemology Is the study of how we come to have and
what constitutes knowledge.

e Glven a set of statistical procedures judged to be valid, a
sound epistemological foundation for biological science
comes, In part, from the application of those procedures.

e But how do we derive knowledge about the validity of
our statistical methods such that they are also enjoy a solid
epistemological foundation?



Method Validation

Epistemologically Valid A Circular &
Frameworks: Induction Epistemologically
& Deduction Invalid Framework
Deduction: i.e., mathematical proof. + Application to single real
Induction: data sets of unknown
— Simulations nature.
— Plasmodes

Composite Approaches. Application to
multiple real data sets of unknown nature
with methods of partially known properties.



What 1s High Dimensional
Biology?

* High Dimensional Biology —Is a broad
topic covering biological systems where the
number of variablesisvery large.

o Topicsthat often fall in HDB are
microarray, proteomics, linkage, and
genomics.

« HDB isalso highly collaborative both ‘wet’
and ‘dry’ lab people.



Affymetrix type array
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What Do All These Topics Have
In Common?

_ots and L ots and L ots of
Numbers!!!



If you have numbers what do you
do?

o Statistics (and Design) !
e Or asmost of you think Statistics Ugh!

 Most of the statistics used in HDB are identical to
statistical methods that have been used for years.

* The thought process that goes into design is also
similar to those that have been used for years.



Design

 Design isthe art of designing an experiment
In such away that the question that is being
asked can be easily and unambiguously
answered.

* The experimental hypothesis drivesthe
design.



Statistics

* Methods for make inferences about a
population as awhole by taking a sample.

o Statistics and design work in harmony with
the biology, while design and statistical
may be the cause of alterationsin
experiments, the biology isthe sine qua
nome.



What are Statistics and Design?

 The goa of experimental design and statistical
analysisisto alow an investigator to answer the
guestion that they would like to ask correctly and
efficiently.

o Often dtatisticians are areality check. If you can't
explain your experiment to a statistician will it
make sense in a publication?



Biological question

> Differentially expressed genes
Sample class prediction etc.

Experimental design

Microarray experiment

16-bit TIFF files

Image analysis

, (Gfg, Gbg), Signal

Normalization

, G, S

Biological verification

and interpretation From T. Speed



e Known sources of non-biological error (not
exhaustive) that must be addressed
— Technician
— Chiplot
— Reagent/gel |ot
— Printer tip
— Time of printing
— Date
— Fluidics well/ Scanner/ positionon scanner
— Order of scanning
— Location
— Cage/ Field position
— Far and away the largest issue is labeling
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e How to address these issues

— Make the experiment as uniform as possible

» Agree on exactly what defines the tissue to be used, use same

technician, same chip lot, same reagents (always buy allittle
too much), same scanner, do sample extraction, labeling and
hybridization on one day if possible, establish quality control

— Randomize when uniformity is not possible
 Don’'t do all of condition 1 on day 1 and condition 2 on day 2
» Randomize the time a chips sits waiting to be scanned
» Randomize animal cage/plant field position
e Microarrays generate such a huge volume of datathat isis
possible to detect these issues, | suspect that northerns,
Southerns, RT-PCR, westerns, and more have ssimilar

problems.



Elements of Statistics

Power — the probability of detecting something if
It iIsthere. Usually afunction of sample size and
size of difference to be detected

Image Analysis
Quality Control- normalization/transformation
Normalization

Statistical Analysis

— Class discrimination
— Class prediction

— Class differentiation

Annotation
Bioinformatics issue



Image Analysis

 How do you go from an image to a number?
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Parts of other Protains
-

Which Size
Q —  Circle?

m
- ' From Helen Kim




lmage Analysis

SRG Fixed Circle
Inside the boundary is spot (foreground), outside is not.

From T. Speed



Quality Control/Normalization

* Not all gels, chips, sequencing runs, etc are
perfect

e Some are so bad they should be dropped
e Other can be fixed

— Identify problem values areas
— Fix them — adjustments and normalization




Spatial plots: background from the two slides

From T. Speed



5% GSE Control

From Helen Kim
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Time of printing effects
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1000 2000 3000 4000 5000 6000

Green channel intensities (log,G). Printing over 4.5 days.
The previous slide depicts a slide from this print run.
From T. Speed/H Yang



~ Mean Normalization
swoc Intensity correction only
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Before After
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Composite normalization

{c)

Before and after composite -MSP lowess curve
normalization

(Other colours control spots)



Statistical Analysis

o Statistical Analysis
— Class discrimination
— Class prediction
— Class differentiation




Suppose we conduct a t-test of the difference between
two means and obtain a p-value < .05. Does this
mean:

a) There is less than a 5% chance that the results are due to
chance.

b) If there really is no difference between the population means,
there is less than a 5% chance of obtaining a difference this
large or larger.

c) There is a 95% chance that if the study is repeated, the result
will be replicated.

d) There is a 95% chance that there is a real difference between
the two population means.

Adapted from: Wulff HR, Andersen B, Brandenhoff P, Guttler F (1987):
What do doctors know about statistics? Statistics in Medicine 6:3-10



5% GSE Control

From H Kim



Data visualization

Cluster analysis

— Clustering

— Self organizing maps
Multidimensional scaling
Similarity searching



Clustering

 Therearealarge
number of clustering
algorithms.
— Hierarchical
— Non-hierarchical
— Different weights

— All will give different
answers.

— None are statistical
tests

From Nature
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Figure 2

K-Means
Clustering

Source
U N k nown ® & ® Centroids
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e Discriminate Analysis
— Build a predictive mode for future data based
upon previous data.

— Each new sample is assigned the probability
that 1t will fall into one the classes.

o Assign new samplesto one of several
groups
— e.g. Isanew tumor adenoma or squamous cell
carcinoma



Activated B-Like

(Unknown UG Hs.169081 ets variant gene 6 (TEL oncogene); Clone=1355435)
“Deoxycytidylate deaminase; Clone=1302032
*T-cell protein-tyrosine phosphatase=Protein tyrosine phosphatase, non-receptor type 2; Clone=665903
*Cyclin D2/KIAKO002=3"' end of KIAKO00Z cDNA; Clone=1357360
*peoxycytidylate deaminase; Clone=1185959
*potassium voltage-gated channel, shaker-related subfamily, member 3; Clone=1337856
*Unknown; Clone=1350877
*Deoxycytidylate deaminase; Clone=489681
*T-cell protein-tyrosine phosphatase=Protein tyrosine phosphatase, non-receptor type 2; Clone=740402
*IRF-4=LSIRF=Muml=homologue of Pip=Lymphoid-specific interferon regulatory factor =Multiple myeloma oncogene 1; Clone=270770
*Cyclin D2/KIAK0002=3" end of KIAKO002 cDNA; Clone=366412
(Unknown; Clone=825920)
*Deoxycytidylate deaminase; Clone=489681
*T-cell protein-tyrosine phosphatase=Protein tyrosine phosphatase, non-receptor type 2; Clone=1370148
#IRF-4=LSIRF=Muml=homologue of Pip=Lymphoid-specific interferon regulatory factor =multiple myeloma oncogene 1; Clone=1272196
*MCL1=myeloid cell differentiation protein; Clone=711870
“core binding factor alphalb subunit=CBF alphal=PEBPZaal transcription factor =AMLl Proto-oncogene=translocated in acute myeloid leukemia; Clone=26325]
*zinc finger protein 42 MZF-1; Clone=490387
*Unknown; Clone=1372162
(Unknown UG Hs.55947 Homo sapiens mRNA for KIAaD805 protein, partial cds; Clone=1288180)
*PKU-beta=KIAAQl37=protein kinase; Clone=825383
(Unknown; Clone=1352715)
*SLAP=src-1ike adapter protein; Clone=52564
(xE7=B-Tymphocyte surface protein; Clone=1339106)
*erk3=extracellular signal-regulated kinase 3; Clone=50506
“PRK=putative serine/threonine protein kinase; Clone=739192
*MAPKAP kinase (3pK); Clone=1336478
(unknown UG Hs.79937 ESTs; Clone=682976)
(dual specificity phosphatase tyrosine/serine; Clone=291332)
*FLICE-1ike inhibitory protein long form=I-FLICE=FLAME-1=Casper=MRIT=CASH=CFLIP=CLARP; Clone=711633
*SLAP=src-1ike adapter protein; Clone=815774
*pTP-1B=phosphotyrosyl-protein phosphatase; Clone=472182
*pakl=p2l-activated protein kinase; Clone=595474
(Protein disulfide isomerase-related protein (PDIR); Clone=703707)
(unknown UG Hs.143722 ESTs, Moderately similar to !!!! ALU SUBFAMILY SQ WARNING ENTRY !!!! [H.sapiens]; Clone=705272)
(Unknown; Clone=1340742)
#*SLAP=src-1ike adapter protein; Clone=701768
(smad4=pPC4=Homologue of Mothers Against Decapentaplegic (MAD)=required for TGF beta signaling=tumor suppressor in pancreatic cancer; Clone=774619)
#PKU-beta=KIAAO0L137=protein kinase; Clone=563451
*BMI-1; Clone=1048586
#pTP-1B=phosphotyrosyl-protein phosphatase; Clone=685177
(EDG-1=endothelial differentiation protein=putative G-protein-coupled receptor; Clone=307325)
*BAK=BCL-2 family member; Clone=1288183
(unknown UG Hs.59368 ESTs; Clone=1353778)
l=extracellular matrix receptor-III=Hyaluronate receptor; Clone=713145
=extracellular matrix receptor-III=Hyaluronate receptor; Clone=703824
*Transforming growth factor, beta receptor II (70-80kD); Clone=1351378
(cpc37 homolog=subunit of Hsp90; Clone=346753)
*pM5 protein=homology to conserved regions of the collagenase gene family; Clone=1357489
#3' 5'-cyclic aMP phosphodiesterase=rolipram-sensitive cAMP-specific phosphodiesterase (PDE2); Clone=377708
(unknown UG Hs.B86987 ESTs, Highly similar to (defline not available 5059425) [H.sapiens]; Clone=825854)
#unknown UG Hs.192708 ESTs, Highly similar to a-myb N-terminal region )2341 is 2nd base in codon) [H.sapiens]; Clone=745995
*Unknown UG Hs.28355 ESTs; Clone=703735
*BCL-6; Clone=712395
*TdT = Terminal Deoxynucleotide Transferase; Clone=667782
*KIAADD93=NEDD-4=E3 ubiquitin protein ligase; Clone=135343
*Unknown; Clone=684877
(Unknown; Clone=2020)
*BCL-7A; Clone=1337241
*Unknown UG Hs.125815 ESTs; Clone=1252102
*CD10=CALLA=Neprilysin=enkepalinase; Clone=200814
*Cyclin H; Clone=795296
*BCL-6; Clone=1340526
(unknown; Clone=1240688)
#CDl0=cALLA=Nepri lysin=enkepalinase; Clone=1286850
*1AWl=Tymphoid-restricted membrane protein; Clone=815539
#Unknown UG Hs.186709 ESTs, weakly similar to !!!! ALU SUBFAMILY SB WARNING ENTRY !!!l [H.sapiens]; Clone=825852
*Unknown UG Hs.222808 ESTs; Clone=815273
(similar to intersectin=adaptor protein with two EH and five SH3 domains; Clone=1339781)
*JINK3=Stress-activated protein kinase; Clone=23173
(Unknown UG Hs.219237 ESTs, Highly similar to !!!!l ALU SUBFAMILY SX WARNING ENTRY !!!! [H.sapiens]; Clone=1372254)
(unknown; Clone=1334297)
(Unknown UG Hs.231798 ESTs; Clone=827169)
(Unknown; Clone=1270568)
*rRPD3L1=homologue of yeast RPD3 transcription factor; Clone=814080
#DNA (cytosine-5-)-methyltransferase; Clone=1320361
(unknown UG Hs.163222 ESTs; Clone=1338044)
(unknown; Clone=2005)
*TTG-2=Rhombotin-2=translocated in t(11;14)(p13;qll) T cell acute Tymphocytic leukemia=cysteine rich protein with LIM motif; Clone=685456
(unknown UG Hs.120245 Homo sapiens mRNA for KIAA1039 protein, partial cds; Clone=1268870)
*FMR2=Fragile X mental retardation 2=putative transcription factor=LAF-4 and AF-4 homologue; Clone=1352112
*TTG-2=Rhombotin-2=translocated in t(11;14)(p13;q11) T cell acute lymphocytic leukemia=cysteine rich protein with LIM motif; Clone=712829
*myb-related gene A=A-myb; Clone=1367994
*1AWl=1ymphoid-restricted membrane protein; Clone=815539
*Unknown UG Hs.145058 ESTs; Clone=824754
*Unknown UG Hs.124922 ESTs; Clone=1337653
*Unknown UG Hs.124922 ESTs; Clone=1358244
*Unknown; Clone=1351325
#1AWl=Tymphoid-restricted membrane protein; Clone=417502
(Unknown UG Hs.137038 EST; Clone=1338981)
“myb-related gene A=A-myb; Clone=825476
(unknown UG Hs.208410 EST, moderately similar to !!!! ALU SUBFAMILY SB WARNING ENTRY !!!! [H.sapiens]; Clone=1353036)
*ynknown UG Hs.105261 EST; Clone=824088
#Unknown; Clone=1353041
*Unknown; Clone=1353015
(unknown UG Hs.120716 ESTs; Clone=1334260)
*Unknown; Clone=825199
(Unknown UG Hs.224323 ESTs, Moderately similar to alternatively spliced product using exon 13A [H.sapiens]; Clone=1338448)
(Unknown UG Hs.136345 ESTs; Clone=746300)
(unknown UG Hs.169565 ESTs, Moderately similar to !!!] ALU SUBFAMILY SB WARNING ENTRY !!!! [H.sapiens]; Clone=825217)




® Correct Votes
® Incorrect Votes

From Nature



o Supervised Analysis

» \What genes are most different between two
O More groups



“There are other experiments, howevet, which cannot easily
be repeated very often; in such cases it is sometimes
necessary to judge the certainty of the results from a very
small sample, which itself affords the only indication of
the variability.” -~ Student (1908)



Types of Statistical Tests and

Approaches

Type of Independent Data

One Categorical Continuous
Sample :

(focus Two Samples Multiple Samples

usually on Repeated

Type of Dependent Data estimation) | Independent | Matched | Independent | Measures Single Multiple

Categorical (dichotomous) 1 2 3 4 5 6 7
Estimate Chi-Square McNemar | Chi Square Generalized | Logigtic Logistic
proportion | Test Test Test Estimating | Regression Regression
(and Equations
confidence (GEE)

[imits)

Continuous 8 9 10 11 12 13 14
Estimate Independent t- | Pairedt- | Analysis of Multivariate | Simplelinear | Multiple
mean (and | test test Variance Analysisof |regresson& | Regression
confidence Variance correlation
[imit) coefficient

Right Censored (survival) 15 16 17 18 19 20 21
Kaplan Kaplan Meier | Very Kaplan-Meier | Very Proportional | Proportional
Meier Survival for unusual Survival for unusual Hazards Hazards
Surviva both curves, each group, anaysis analysis

with tests of with tests by
difference by generalized

Wilcoxon or Wilcoxon or
log-rank test Generalized

After G Howard Log Rank




What should | use for 2-group testing?

Equal
variances’

no

Equal
variances’

Equal sample
Sizes?

no Equal

variances’y
n

0

Equal
variances’y




Figure 3. Mixture Model Approach from Allison et al. (2002).
Similar to Story et al (2002) and Pounds (2003)

Under the null hypothesis, the distribution of p-values is
uniform on the interval [0,1] regardless of the sample size
and statistical test used (as long as that test is valid).

Alternative

Under the alternative hypothesis, the distribution of p-
values will tend to cluster closer to zero than to one.



Relative Frequency

Fitted mixture model to 12,625
P-values
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TESTING DEFINED

Truth

Null Alt
c Null a b K-R
g
(&)
= Alt C d R
O

K-M \Y K

c = type 1 error (alpha) — false positive
b = type 2 error (beta) — false negative




FDR - False Discovery Rate

When many hypotheses are tested the sample size required
for aBonferroni corrected p < 0.05 were prohibitive in
most contexts.

Some attempts were made for intermediate adjustments
— Lander and Botstein (1989) for linkage data

Benjamini and Hochberg 1995 pulled together several
streams of research on adjusting for multiple testing.

— Developed method for setting an adjusted p-value that
controlled for type | error

— Like many statistical methods it has been ‘ extended’
and abuse to a FDR estimating proceedure

Methods were developed for epidemiology and genetic
studies, but were adapted for HDB studies



Under the null hypothesis, the distribution of p-values is
uniform on the interval [0,1] regardless of the sample size
and statistical test used (as long as that test is valid).

Alternative

Under the alternative hypothesis, the distribution of p-
values will tend to cluster closer to zero than to one.



e Traditiona FWER
— Bonferroni a* = a/n
— Sidak (1-(1-a")
e Very conservative

* Minimize False discovery rates
« Assume independence

* False Discovery Rate
— Designed to estimate the rate of error




Thisiswhere microarray experiments get the most
criticism.
Experiments performed without replication

|mpression that arrays much more expensive than
they are now

Belief that microarrays are not liable to the same
experimental error that experiments are

There also has not been a good way to calculate
sample size



« All power and sample size calculations
require and estimate of population
variability

* For microarrays we use apilot project

e Based upon the posterior probability that a
gene isdifferentially expressed it test
statistic may be increased as a function of
proposed increase In sample size
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e The most time consuming portion of aHDB
experiment Isthe interpretation

* Many databases and resources exist
— Dr. Loraine talked about these in great detall



 Many people get the data and then stare at it
an tell astory based on their subjective
observations about the data.

A posteriori observations are highly biased

A priori observations require knowledge of
pathway, gene family, etc. There can be a
large number of classes.



Global/Meta Analytical Tests of
Pathways

Premise: We can learn something additional and/or test with more power
If we consider the fact that genes may exist within ‘families.” Several
Tests—

— Fisher’s meta analytical tests — combine the individual p-values
from n genes ~x 25,5
— Vote Counting methods
e Onto-express

 GSEA
— Normalize all the datato Z scores and compare the expression
levels

— Issues even under H, if genesin a pathway are correlated there
will be anincreasein type 1 error

— Address FEWR vs FDR per group



Gene Family-Based Hypothesis Testing:
What people say they are testing vs what they
are testing.

Which Null?

1.

None of the genes in family ¢
are differentially expressed.

Mootha et al (2003). “We
Introduce an analytical strategy,

2. The proportion of genes in Gene Set Enrichment Analysis,
family c that are differentially -
exprossed s equalto the designed to detect modest but
proportion of genes in the coordinate changes in the
remainder of the genome that .
are differentially expressed. expression of groups of

3.  The correlation matrix among functionally related geneS.”
the expression levels of the
genes in family c is an identity P :
. This implies that the null of

4.  The correlation matrix among Interest Is #1’ bUt the test

the expression levels of the
genes in family c is the same
across experimental
conditions.

The intersection of #1 and #3.

appears to be the intersection
of #2 and #3.




Global/Meta Analysis

Biological Process

Function Name Total P-Value FDR Bonferroni
inflammatory response 71 1.11E-16 4.72E-14 4.72E-14
immune response 95 8.44E-15 1.79E-12 3.59E-12
epidermal differentiation 38 1.65E-11 2.34E-09 7.02E-09
cell-cell signaling 100 3.14E-10 3.34E-08 1.34E-07
cell adhesion 77 5.72E-09 4.86E-07 2.43E-06
chemotaxis 43 8.73E-09 6.18E-07 3.71E-06
cellular defense response 40 1.74E-08 1.06E-06 7.39E-06
development 80 3.44E-08 1.83E-06 1.46E-05
antimicrobial humoral response 45 9.90E-08 4.68E-06 4.21E-05
response to viruses 18 7.16E-07 3.04E-05 3.04E-04
cell surface receptor linked signal transduction 54 3.29E-06 1.27E-04 1.40E-03
cell motility 47 3.55E-06 1.26E-04 1.51E-03
cell proliferation 79 1.81E-05 5.90E-04 7.67E-03
protein biosynthesis S) 1.81E-05 5.49E-04 7.69E-03
skeletal development 36 2.59E-05 7.34E-04 1.10E-02
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Kyng KJ, May A, Kolvraa S, Bohr VA. Gene expression profiling
In Werner syndrome closely resembles that of normal aging.
Proc Natl Acad Sci U S A. 2003 Oct 14;100(21):12259-64.

“Transcription alterations in WS were strikingly similar to those in normal aging: 91% of
annotated genes displayed similar expression changes in WS and in normal aging, 3%
were unique to WS, and 6% were unique to normal aging. “

/

Differentially
expressed
Old vs
Young

/

Differentially
expressed
Old vs
Young

Yet, by chance
alone, (A-B) will
generally be
correlated with (A-C).
Simulating their data
as closely as
possible suggest a
25% overlap by
chance alone.




Use of FDR for Union-Intersection tests

e Traditional
— The ‘min’ test.
— Low power
— Not of definitive size

— Ignores information (i.e., the p-value for min test is largest p-
value for hy € Hyregardless of the value of any other p-
values).

« |Informational based approaches
— All p-values are not equal
— A variety of waysto weight
— Let’sconsider FDR or PTP —these are equal across datasets
— Can conduct ssmple product of FDR.



Linkage Analysis

Microarray Analysis




Bioinformatics | ssues

« HDB studies generate a huge amount of
Information.

« Storage and handling of the data can be
difficult.

e Data standards are developing (MIAME for
microarrays), proteomics just beginning.



End of Part 1




Statistical Analysis of Peptides




Subcellular fractionation,

Cells, tissue protein chromatography
Peptide
Proteins Peptides chromatography
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n/ FEBS Letters 579 (2005) 885-889




How to use MS for protein identification

Peptide mass fingerprinting

—

EXCISE @ DIGEST ’Q%(\?/}g MS |
/\/

B 2D-GEL, | '

Proteins Sample

A
.
m/z

Example: peaks at m/z 333, 336, 406, 448, 462, 889
The only protein in the database that would produce these peaks is
MALK|CGIR|GGSRPFLR|ATSK|ASR|SDD

* The exact protein needs to be in the database
 Works only with single protein fragmentations



Shotqun Protein Identification

protein protein
sample identifications
Protein
level -
: ! pephde
enzymabic , :
i ) | grouping
digestion .\ validation
Peptide &
level '
database
Tandem mass search
spectrometry validation
MS/MS spectrum [t Ll Ll Lall, Ll Lalb, Lt Lt L,
level

MS/MS spectra
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Example MS/MS spectrum



Interpretation of MS/MS data

* Direct interpretation ("de novo sequencing")
— spectrum must be of good quality
— the only identification method if the spectrum is not in the database
— can give useful information (partial sequence) for database search

 General approach for database searching:

— extract from the database all peptides that have the same mass as
the precursor ion of the uninterpreted spectrum

— compare each of them them to the uninterpreted spectrum

— select the peptide that is most likely to have produced the
observed data

« MASCOT:

— simple probabilistic model

— calculate the probability that a peptide could have produced the
given spectrum by chance



Threshold Model

. =correct” . -

SEQUEST:
Xcorr= 2.0
AC =01

&
-
-
H -'-._1:-."
F
",
o .

sort by search score

L
."'l-. .\'-\._-h

incorrect L MASCOT:
' S lon Score > 30




Threshold Model:

Bad Discrimination and Inconsistency

Sensitivity:
fraction of all
correct results
passing filter

SEQUEST thresholds
(from literature)

Error Rate:
fraction of all
results passing
filter that are

06 07 08 00O _
f Incorrect

sensitivity

test data (18 proteins): OMICS 6(2), 207 (2002)

From Alexey Nesvizhskii




Difficulties in Interpreting Peptide
Identifications based on MS/MS

Applies to both SEQUEST and Mascot (as it is
used in practice) and, to large degree, to more
recent tools

* No ‘useful’ measures of confidence

(Mascot: ‘identity threshold’ guideline 1s not practical and
rarely used)

+ Different critena used to filter data

* Unknown and variable false positive error rates

From Alexey Nesvizhskii



Just as assignment of quality scores to each base
In DNA sequencing was essential for the genome
sequencing programs, statistical models for
estimating the accuracy of peptide and protein
identifications are crucial for the success of high
throughput proteomics

From Alexey Nesvizhskii




Statistical Validation

= p-values or expectation values

used, e.g., In sequence similanty searching

= Probabilities (Bayes)

based on the ratio of two distnbutions (comrect and
incormect) derived from the data (entire dataset)

used, e.g., In information retneval (relevant vs. non-
relevant documents)

From Alexey Nesvizhskii



Expectation Values (empirical model)

robability to get score
Spectrum Database p(ﬁ m:,'l = ZP [5 ) EE Sm bywmﬂrﬁ

expected number of
E(s,)=N ZP{E} random matches
25y with s 2s5_

Rank Peptide Score P
2 VVEELLTPEGK i | 0.11 il
3 DLLLOWCWENGE 2.0 0.23 o
4 ECDVVSHTIIAEE 1.9 0.52 5
5 GDAVFVIDAINE 1.7 0.72 H
& VETDHVSVVINE 1.6 0.86
7 1.6 T
B PEQSDLESWTAE 1.5 0.94

meAlexel;*N 2phides Fenyo & Beavis Anal. Chem. (2003)



Expectation Values (explicit model)

Spectrum Database Sadygov & Yates Anal. Chem. (2003)
Geer et al. J. Proteome Res. (2004)

P(s) = _E"P{_J”) atution

e Th fum:tmn of mass tolerance,
number expenmental peaks
s. number of matched peaks number of calculated ions
mass, charge
szﬂhiim}":’ get score P(.g )= ZP{E} Geer et al.
S 2 s, by chance 525, .~ (upper bound)

expected number of E(s,)=N(1-(Q1- ZP{I}}H]”N: ZP{E:'
random matches
with s 2s, E(s,) =N P(s) ~— Sadygovetal
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Expectation Values (or p-values):
Limitations

1. P-values or E-values are not well suited for the analysis

of large-scale datasets (do not allow estimation of ermmor
rates as a function of filtering threshold)

see, e.g., recent papers by Tsibshiran and others on the subject
of p -values vs. False Discovery Rate (FDR) approach

Z2_ Difficult to take advantage of other useful information
(e.g., number of missed cleavages, peptide retention
time)

3. Need to compute protein probabilities by combining
probabiliies of peptides comresponding to the same
protein. Whether peptide expectation values can be used
for that purpose Is not clear

From Alexey Nesvizhskii



Modeling Large-Scale Datasets

specira entire dataset, M spectra
(1 or more LC/MS/MS runs)

Database
7 ”‘ o Spectrom Peptide Score
3 \ :m. 1 ISLLOAQSAPLR 4.5
1 2 VVEELCTPEGK 3.9
ltl, Snese M T |3 DLLLOWCWENCK 1.2
/ TR 4 ECDVVSNTIIABRK 0.9
4 - s 5 COAVFVIDALNR 3.6
-I."I'I-'- -
M SYLFCMEAEK 1.1
A
’ M { !
TN

M ‘ HH / best match raw score

to each spectrum E value
p-value
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Statistical Model for Computing
Peptide Probabilities (PeptideProphet)

entire dataset:

Spectrum Peptide Score o
Ir.:'::
1 ISLIDAQSAPIR 4.5 o
2 VVEELCTPECE 3.9 —
3 DLILOWCWENGE 1.2 =
4 ECDVVSNTITIAEE 0.9 -
5 CDAVFVIDALNR 3.6 =
=
M SYLFCMEAEK s |
T | ’|r
specirum I score database search score

best match

A. Keller, A.l. Nesvizhskil, E. Kolker, R. Aebersold Amal. Chem. 74, 5383 (2002)
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Statistical Model for Computing
Peptide Probabilities (PeptideProphet)

entire dataset:

v
Spectrum Peptide Score o _
@ imcorrect
o
1 ISLIDAQSAPLR 4.5 i~
? VVEELCTPEGE 3.9 o
3 DLLLOWCWENGE 1.2 o
4 ECDVVSHTIIAEE 0.9 =
5 GDAVFVIDALNR 3.6 = correct —
M SYLFCMEAEK 1.1 R VS
v W
‘unsupervised clustenng’ database search score

EM mixture model algorithm leamns the most likely distnbutions
among comect and incommect peptide assignments given the
observed data

From Alexey Nesvizhskii




Tllustration: Assigning Probabilities to
Mascot Search Results

- o T distnbutions are

Mascot score —probability

aegp " T T TP -_|:|F _' |EﬂmE'.‘d ffEIIT'I thE
. 0.8 +— ! data

':__I [I I]EI ' RS III.
D4 | i
1 : conversion of Mascot search

1500 0.0 scores into probabilities

0 10 20 30 40 &0

gsarch score

1000 |

. ] . . To address a commaon
Extreme 1 alue dist misunderstanding;

RO '

number of spectra

correct --- (Gaussian | distribution parameters
Dl S e g o ] ARE NOT determined using
-10 0 10 20 30 40 50 60 70 BO 901010120 a control dataset of 18 proteins,
Mascot search score or any other training dataset
for that matter. They are
: leamed from each analyzed
H. Influenzae, membrane frachion, 15 LG/IMS/MS dataset anew using the

runs (~30,000 spectra) EM mixture model algorithm
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Accuracy of Learned Distributions
and Computed Probabilities

database searched:
2500

Human

rodel . P
model [~
0.8 s

v -

A~ ideal
.

2000

1500

.
—
Y
HE
L
e
-
O
—
e
=
et
o
[
10
=
-

T TR size ratio: ~ 20:1
e probability For those familiar with “reverse
achas made ' database search™ approach:
KO0 : .:L?-h-.:!._.. mode! ] This is an equivalent of appending
solid: observed p ) ——
0 e — e — of equal size.
:1ﬂ 0 10 20 30 40 50 60 70 B8O SO100410

Mascot search score Method 1s accurate

H. Influenzae, membrane fraction, 15 LC/MS/MS runs
~30,000 spectra
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Question?
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